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Abstract—To achieve seamless interactions, robots have to be
capable of reliably detecting affective states in real time. One of
the possible states that humans go through while interacting with
robots is frustration. Detecting frustration from RGB images can
be challenging in some real-world situations; thus, we investigate
in this work whether thermal imaging can be used to create
a model that is capable of detecting frustration induced by
cognitive load and failure. To train our model, we collected a data
set from 18 participants experiencing both types of frustration
induced by a robot. The model was tested using features from
several modalities: thermal, RGB, Electrodermal Activity (EDA),
and all three combined. When data from both frustration cases
were combined and used as training input, the model reached
an accuracy of 89% with just RGB features, 87% using only
thermal features, 84% using EDA, and 86% when using all
modalities. Furthermore, the highest accuracy for the thermal
data was reached using three facial regions of interest: nose,
forehead and lower lip.

Index Terms—Human-robot interaction; Thermal imaging;
Frustration; cognitive load; Action units;

I. INTRODUCTION

In collaborative environments with robots, users are prone
to feeling frustration due to the robot’s behavioural errors,
such as social norm violations, or technical errors, like speech
recognition failure [1], [2]. This can affect acceptance of the
robots [2]. Furthermore, frustration can be associated with
lower levels of productivity [3], motivation [4], and trust [1],
and higher levels of aggression [5], [6]. If a robot can detect
frustration in a user, it could proactively employ mediation
strategies or abort the interaction before that state intensifies.

Although current methods can accurately extract social
signals (e.g., facial landmarks, action units and pose estima-
tion) [7]–[9], inferring affective states and understanding those
signals can be skewed, biased, and/or subjective [10], [11].
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Thus, several sensors have been introduced to detect those
affective states using different physiological signals, including
electrocardiography, electromyography, skin conductance and
body temperature [12]. However, these sensors are usually in-
trusive and can affect the participants’ behaviour [13], making
them unsuitable for real-world scenarios.

In 1997, Hirokazu Genno [14] proposed one of the first
methods to evaluate stress and fatigue using thermal cameras.
In spite of technical limitations in accuracy and resolution, a
high correlation was observed between reported stress levels
and the measured facial temperatures. This is due to the auto-
matic reactions of the sympathetic nervous system, which are
reflected in facial temperature [15]–[17]. As thermal cameras
are becoming more accurate and affordable, thermal imaging
has been gaining attention for detecting internal states like
stress [18], cognitive load [19], [20], and deception [21].

Some researchers suggest that there are different types
of frustration [22]. We focus our work in the detection of
frustration in two cases that we consider relevant for human-
robot interaction (HRI): failure-induced frustration and cog-
nitive load-induced frustration. Cognitively demanding situa-
tions relate to stress and anxiety [23]; moreover, failure to
resolve the situation or to change that stressful state can lead
to the onset of frustration [24]. Additionally, the occurrence
of a repeated failure is directly related to frustration and
disappointment [25]. According to [26]–[28], frustration might
be multi-faceted and can be affected by the task’s length,
nature, or sequence. Hence, we have reasons to believe that,
by inducing frustration in different scenarios, we can create a
more general prediction of frustration.

In this work, we used an infra-red thermal camera to
investigate if a machine learning model can detect frustration
using facial thermal data in an HRI scenario. This will be
achieved by:

• Comparing the model’s performance when using RGB
features, i.e. Action Units (AUs), facial thermal features
and ElectroDermal Activity (EDA) features;



• Selecting the facial thermal Regions Of Interest (ROIs)
that yield the highest prediction accuracy;

• Investigating the effects of aggregating the data points
into time intervals of 1, 3.5 and 7 seconds (window size).

In section II, existing approaches are discussed for thermal
imaging and frustration prediction. Then, a detailed description
on the data collection method and the full system architecture
is explained in section III. Section IV addresses the classi-
fication methods and discusses the features extracted. Lastly,
the results are stated in section V and discussed thoroughly
in section VI.

II. RELATED WORK

Understanding frustration and detecting it while people are
interacting with robots is an ongoing challenge. This study
will be based on the advancements made in thermal imaging,
affective state detection and frustration detection.

A. Frustration Detection

Frustration has been established as one of the most im-
portant affective states to detect in HRI [29]. Hence, sev-
eral approaches have been implemented to detect frustration.
Taylor et al. [30] simultaneously used three wearable sensors
to detect five levels of frustration with 80% accuracy using
physiological data like electrodermal activity, heat flux, heart
rate, skin temperature and skin conductivity. While the results
were promising, the use of three different sensors is hardly
applicable outside of a laboratory setting and might affect the
participants’ behaviour. In addition to physiological data, other
non-verbal data have also been used for classification. Kapoor
el al. [31] used skin conductance, pupil tracking, posture,
mouse pressure and smile probability to predict frustration in
a tutoring scenario with a virtual agent. The authors highlight
the importance of detecting frustration in similar scenarios
and compared several machine learning approaches reaching
a prediction accuracy of 79%.

A data-driven approach was taken by [25] to classify frustra-
tion and disappointment caused by the same task. The authors
collected the AUs, EDA and heart rate from 18 subjects
within 5 seconds of the occurrence of an event. The event
was based on a web form that the participants were made
to believe they had to fill out to proceed to the experiment.
When the participants tried to submit the form, an error would
occur. The occurrence of the first error was assumed to cause
disappointment, and any successive errors were assumed to
cause frustration. This assumption was supported by self-
reports from the participants after the experiment. The authors
then created a multi-class classifier that distinguished between
neutral, frustration, and disappointment states. Using different
data subsets and different machine learning algorithms, they
achieved a maximum accuracy of 64%. The authors used
only the tonic component of the EDA without any further
processing or feature extraction, which limits their results [32].
Furthermore, they used a shuffle split for cross-validation,
which does not guarantee different folds, especially for small
data sets.

B. Affective State Detection and Thermal Imaging

Using visual sensors to detect affective states is common
in the literature. In [33], the authors used a Microsoft Kinect
to extract action units and body movement to predict the six
basic affective states: anger, fear, disgust, happiness, surprise
and sadness. The authors then fed the facial expression and
body movement data streams separately to a uni-modal neural
network, and they applied late fusion to determine the affective
state of the participant. Their model achieved an accuracy of
93% on an acted affect data set.

Image-based methods for affective state detection, however,
are heavily dependant on lighting conditions, and the accuracy
of their detection can be drastically affected by the self-report
measures and conflicting facial expressions [34].

Alternatively, thermal cameras use far infra-red to measure
the radiation emitted by warm objects, which is independent
of reflected light [35]. Hence, thermal imaging can be used to
overcome an RGB camera’s limitations, as the thermal spec-
trum is not affected by light presence and it is able to record
objective measures, such as changes in skin temperature [36].

Thermal imaging primarily has been used by researchers
to detect the six basic affective states. For instance, the
Kotani Thermal Facial Emotion data set [37] contained visual
and thermal images of 26 subjects experiencing those states.
Each affective state was induced by making the participants
watch an emotional video clip while measuring facial thermal
changes. The baseline was collected from the participants
while listening to music between clips, and each affective state
was labeled based on the participants’ self-reports.

More complex affective states like guilt, shame, and remorse
were also investigated [38]. The authors induced them by intro-
ducing the participants to storyboards with different scenarios,
each designed to induce one of those affective states. They
found thermal differences between the affective states, as guilt
resulted in a change of at least 0.5° C higher than shame and
remorse in the forehead, cheek, and mouth regions.

In addition, stress and cognitive load have been a focus
for thermal imaging, as their effects on the facial temperature
are established in psychology literature [39]. For example,
[20] detected cognitive load induced by the Stroop effect
and reading tasks, and observed a high correlation between
the difficulty of the task and the facial temperature, with an
increase in the nose and decrease in the forehead region.
Stress detection in HRI using thermal data was discussed
in [40], where a thermal camera was mounted on a Meka
robot to measure facial temperature variations while playing a
card-based quiz game with the robot. Several scenarios were
tested with variations in setting parameters. It was observed
that the closer the robot was positioned to the participant,
the higher their nose temperature. Moreover, they used the
RGB camera’s ROI detection and overlaid it on the calibrated
thermal image. This approach can accurately detect the ROI
in the thermal image while eliminating the need for advanced
image processing techniques (e.g., using a bilateral filter on the
thermal images to preserve edges and reduce the noise [41]



or generating binary images and computing their projection
curves [42]).

As such, we used an RGB camera calibrated with the
thermal camera to detect ROIs, which can be done using an
off-the-shelf face detection model. Furthermore, other more
complex facial features can be extracted from the RGB image,
including action units, which can later aid in the creation
of multi-modal systems with better prediction accuracy for
affective states.

To the best of our knowledge, there is no study that
examined frustration using thermal imaging, let alone with
different types of frustration. In our study, we bridged this
gap and used thermal imaging to detect frustration in two
cases: cognitive load-induced frustration and failure-induced
frustration.

III. DATA COLLECTION

A. Participants

A total of 25 participants (12 female, 13 male) without
any known history of neurological or psychiatric disorders
were recruited for the experiment. The recruitment process
was through online platforms, word of mouth and flyers. Most
recruits were from the surrounding area and the university
campus. The age of the participants ranged from 21 to 46
years (M = 27.80, SD = 6.18). The submitted work describes
research with human participants and was approved by a
relevant ethics committee. The data from five participants was
discarded from the analysis for technical problems occurring
during the experiment, as some participants did not comply
with the task instructions or frequently touched their face
during the data collection. The data from two participants were
discarded since they self-reported (see subsubsection III-B5)
that they did not get frustrated in any of the tasks. For
the analysis, we used data collected from 18 participants (9
female, 9 male), with ages between 21 and 39 years old (M
= 27.28, SD = 5.67).

B. Task Description

Participants had to complete two tasks separated by a resting
period. A NAO robot provided instructions and guided the
participants through the tasks. Two cameras were mounted on
a table: a thermal camera and an RGB camera, positioned
high enough to ensure that the participants face was always
visible, as seen in Figure 1. One task consisted of a quiz
where the answers from the participant were misinterpreted
by the robot, leading to frustration caused by failure; the
other task involved the completion of two challenges in the
laptop in front of the participant. Participants had to alternate
between the two challenges when prompted by the sound of
a buzzer. According to cognitive load theory, cognitive load
can be reduced if the task is learned [43], hence, switching
between tasks constantly is theorized to keep the participant
in a constant cognitive load state. Since the participant fails to
overcome the cause of the cognitive load, frustration is also
expected to occur [24].

Fig. 1: Experimental setup.

As such, the experiment consisted of four stages: baseline
(B), collected before the start of the first task, cognitive load-
induced frustration (TCog), rest and failure-induced frustra-
tion (TFail) (Fig.2). The order of the two tasks (TFail and
TCog) was balanced among participants to avoid bias due to
presentation order. Before each task, the NAO robot briefly
explained the instructions and during the tasks a countdown
was displayed on a monitor in front of participants.

1) B: We considered as initial baseline a 1 minute time-
window before the first interaction with the robot.

2) TFail: A simple game of trivia was played between the
participants and the NAO robot. The robot was teleoperated
by a human wizard. The participant was instructed that they
must provide 10 correct answers in less than 5 minutes in
order to increase their reward by 20 SEK, from the 80
SEK they were promised. We note that the participant would
receive the full compensation of 100 SEK regardless of the
performance. During the interaction, NAO asked 14 obvious
general questions, e.g. ’how many hours are there in a day?’,
or referred to pictures shown on the laptop in front of the
participant. The order of the questions and the robot responses
were predetermined. The answers to the first three questions
were correctly identified by the robot, but from the fourth
question onwards the robot intentionally declared an answer
to be incorrect or it took time while ’processing the answer’ in
order to induce frustration. This behaviour was repeated until
the time was up or the participant answered all the questions.
Out of the 14 questions, 8 answers were considered correct,
and in 4 instances NAO took longer to process (2 ending with
correct responses).

3) Rest: The participant was prompted to wait and listen
to classical music for two minutes, in order to isolate the
physiological responses from each task.

4) TCog: Cognitive load would be induced by a dual-task
composed of a challenging coding task1 and a mental rotation
task2 for 8 minutes. In the coding task, participant had to
program (using a visual programming language interface) an
animated robot to move from one place to the other and its

1https://oscared.github.io/level 4/
2https://vample.com/tools/mental-rotation/

https://oscared.github.io/level_4/
https://vample.com/tools/mental-rotation/


level of difficulty was based on the participant programming
background. When a loud buzzer sound was played, the
participant had to solve one question in the mental rotation
task and after that go back to the coding task. The timing
and the number of the buzzer occurrences were adapted to
the performance. In general, the closer the participant would
get to solving the coding task, the smaller the intervals were
between buzzer rings.

5) Self-assessment: Four different types of self-assessment
questionnaires were given to the participants. They had to dig-
itally fill out three of them before the start of the experiment:

• demographic data,
• technical affinity,
• personality traits [44].

The technical affinity questionnaire included questions about
current and previous experience with robots (’have you ever
seen a robot in real life?’). Furthermore, after each task
the participants filled out the NASA-TLX [45] questionnaire,
stating the amount of cognitive load and frustration felt during
the previous task. We used the NASA-TLX self-reports as a
manipulation check of our tasks.

C. System Implementation

The system architecture (Fig. 3) was composed of both
hardware and software components, two cameras mutually
calibrated (thermal IR camera: Optris PI 6403 and RGB-
D camera: RealSense D4354), NAO5 robot and an EDA
sensor (embedded in the Empatica E4 wristband6). All of
the mentioned components were synchronized in real-time
using Robotic Operating System (ROS), except for the EDA
sensor, which was synchronized in data post-processing. In
addition, OpenCV was used for image processing and camera
calibration.

The frames from the thermal and RGB cameras were
published to ROS (both cameras acquired 15 frames per
second). Then, the RGB frames were sent into OpenFace to
detect the position of the facial landmarks and the presence
and intensity of 18 action units. After that, applying the
calibration matrix, the landmark positions were transposed into
the thermal frames (Fig. 4) by OpenCV in order to extract the
thermal ROIs, i.e., a rectangle on the thermal image based
on the relevant landmark positions. Finally, an average of the
thermal values within the ROIs was computed. Four facial
ROIs were extracted from the thermal image: nose, forehead,
cheek and lower lip, as shown in Fig. 4.

Furthermore, NAO robot’s SDK (NAOqi) was used to
control the robot’s responses. Key responses which were
considered to be important events in the interaction, e.g.
instances where the robot responded with ’incorrect’,’correct’
and ’processing’, were published in ROS to be synchronized
with the thermal and the RGB data streams.

3https://www.optris.global/thermal-imager-optris-pi-640
4https://www.intelrealsense.com/depth-camera-d435/
5https://www.softbankrobotics.com/emea/en/nao
6https://www.empatica.com/research/e4/

During the experiment, participants wore the Empatica
E4 wristband on the right arm. It captures skin electrical
conductance by passing a minimal alternating current between
two electrodes in contact with the skin. EDA samples are
measured at 4 Hz rate, with a resolution of 900 pS in a
measurable range of 0.01-100 µS [46].

IV. FRUSTRATION PREDICTION

For frustration prediction, our goal is to (1) inspect the
effectiveness of thermal imaging in detecting frustration when
compared to RGB and EDA data, as well as (2) find out
optimal features to identify frustration from thermal, RGB
and EDA features. The frustration classifier is based on a K-
Nearest Neighbors (KNN) algorithm, which is widely used in
affective computing with weighted distance tasks [47], [48].
To evaluate the model, we used cross validation of leaving
one participant out. The models were trained based on the best
features selected by the Sequential Forward Floating Selection
(SFFS) algorithm. The SFFS is a wrapper method that uses
several greedy search methods to select the features that would
yield the highest accuracy in the model. The method was
adopted due to its wide use in the affective computing lit-
erature [49]–[51], over its more simple counterpart, sequential
forward selection, which does not exclude the features once
they are selected.

A. Labeling

Input data for the classifier corresponded the participants
that self-reported frustration in the NASA-TLX questionnaire
in TCog (M = 3.75, SD = 1) and in TFail (M = 3.3, SD
= 0.9). For TCog, we assumed a constant state of cognitive
load-induced frustration onset 30 s after the beginning of the
task. As such, as we do with B for’non-frustration’ instances,
that period was subdivided into non-overlapping ’windows’
of three possible lengths: 1, 3.5 or 7 s. The same windows
were applied to all the modalities and used to extract the dif-
ferent features. The features from each window were used as
instances to train the models (Table II). For TFail, frustration
was not assumed as constant state, but inducted by failure, i.e.,
when the robot replied that the answer was ’incorrect’, which
occurred 6 times during the task. For that reason, in TFail
frustration instances corresponded to 7-second periods after
those event. The length of the period was determined as the
maximum duration allowed to isolate physiological responses
to frustration-inducing events, i.e., the minimum amount of
time between ’incorrect’ events. Each 7-second period was
then subdivided into non-overlapping windows of 1, 3.5 and
7 s. An illustration can be seen in Fig. 5.

All three data subsets (TCog, TFail and TCog+TFail) used
the same baseline (B). Classification with task separation
allows for a more fine grained analysis of frustration, while the
combination of both types allows for a more general prediction
of frustration. The number of instances for each of the data
subsets is shown in Table I.

Furthermore, each subset was trained on four feature types:
thermal, RGB, EDA and all features combined. Window sizes

https://www.optris.global/thermal-imager-optris-pi-640
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
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Fig. 2: Tasks procedure, the order of TCog and TFail was randomized to avoid bias.
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Fig. 3: System architecture.

Fig. 4: (left) Landmarks positions detected in the RGB image;
(right) thermal image overlaid landmarks and the ROIs, which
include forehead, nose, cheek and lower lip.

TABLE I: The number of instances used for training in the
cases of cognitive load-induced frustration (TCog), failure
induced frustration (TFail) and baseline (B).

No. of Instances

Window (s) TCog TFail B

1 7692 1127 1010

3.5 2198 322 303

7 1094 161 151

can be an indication of the duration of the affective state.
Typically, a facial expression lasts between 0.5-4 seconds but
a physiological effect lasts 5-15 seconds [52]. Accordingly,
the window sizes of 1, 3.5 and 7 seconds were inspected for
model training.

B. Pre-processing

Thermal ROIs were standardized using RobustScaler, a
standardization method which removes the median and scales
data based on the quartile range, in order to accommodate for
the presence of outliers.

Similarly, the standardization based on median and quartile
was applied to the EDA data. After that, the EDA was divided
into tonic and phasic components [53]. The sensor sampling
rate of 4 Hz only allowed window sizes of 3.5 and 7 seconds
to be included, otherwise there would not be enough peaks for
meaningful results.

All the data was then labelled and split into B, TCog and
TFail (as described above, see Fig. 6 for reference).

All data processing was performed using Python’s
scikit-learn7, NeuroKit28 and MLxtend9 libraries.

C. Feature Extraction

For each modality, several features were extracted as seen
in Table II.

TABLE II: Extracted features.

Modality Features

Thermal
ROIs temperature average
ROIs temperature change
ROIs temperature maximum

RGB
AU Intensity average
AU intensity change
AU maximum intensity

EDA

Mean skin conductance level (SCL)
Frequency of the peak occurrence
Mean peak amplitude
Peak rise time
Mean peak duration
Mean of inter-peak interval (IPI)

The features for the thermal data were computed for all the
four ROIs: nose, forehead, cheek and lower lip. As for the

7https://scikit-learn.org
8https://github.com/neuropsychology/NeuroKit
9http://rasbt.github.io/mlxtend/

https://scikit-learn.org
https://github.com/neuropsychology/NeuroKit
http://rasbt.github.io/mlxtend/


Fig. 5: The length of data of 60, 450 and 42 seconds considered in Baseline, TCog and TFail, with the window sizes to be 1,
3.5 and 7 seconds.

Fig. 6: An example of thermal data from lower lip from one
participant, after labelling. B consists of a 60-second period.

action units extracted, they corresponded to the Facial Action
Coding System (FACS): 1 (inner brow raiser), 2 (outer brow
raiser), 4 (brow lowerer), 5 (Upper lid raiser), 6 (cheek raiser),
7 (lid tightener), 9 (nose wrinkler), 10 (upper lip raiser), 12
(lip corner puller), 14 (dimpler), 15 (lip corner depressor), 17
(chin raiser), 20 (lip stretcher), 23 (lip tightener), 25 (lips part),
26 (jaw drop), 28 (lip suck), and 45 (blink).

For both the temperature and the AU intensity, we computed
the average, the change and the maximum within each window.

In addition, the tonic component in the EDA data included
the mean Skin Conductance Level (SCL), while from the peak
detection analysis we extracted standard peak features, such
as time interval between consecutive peaks (IPI), frequency of
peak occurrence, mean peak amplitude, mean peak rise time
and mean peak duration, in accordance to [54].

V. RESULTS

To evaluate KNN models performance, both the accuracy
and the weighted F1-score were computed for each modality
and window size. Considering the imbalance of the data, the
accuracy alone might be unreliable [55], therefore, the F1-
score can be a better metric [56]. The metrics were calculated
based on the average result of the cross-validation of leaving
one participant out for each test-train split.

Figs. 7 and 8 describe the performance of each modality
over three window sizes.

1) Thermal: For the TFail model, increasing the window
size slightly increases the accuracy, as in the 1 second window
it is 59% then increases by 5% in the 7 second window. F1-
score follows accordingly, as it is the highest at 64% in the 7
second window. Similarly, in TCog accuracy is the highest in
the 7 second window to 83% . In TCog+TFail, the accuracy
peaks in the 7 second window at 87%.

2) RGB: For TFail, maximum accuracy is achieved in the
3.5 second window (81%) and the lowest in the 1 second
window (69%), while in 7 second window it goes back to
71%. In TCog+TFail, the accuracy in the 1 and 3.5 second
windows is constant at 89%. The accuracy in TCog gets to
89% in the 1 and 3.5 second windows. F1-score follows the
same trend, with a decline to 83% in the 7 second window.

3) EDA: The EDA data was only inspected in the 3.5
and 7 second windows, due to the low sampling rate of the
wristband. In TFail, accuracy goes to 55% in the 7 second
window, while the accuracy in TCog and TCog+TFail is 78%
and 84% respectively and does not vary across window sizes.
A similar trend can also be seen in the F1-score metric, which
in TFail is 53%, while for TCog and TCog+TFail it is 73%
and 78% respectively.

4) All modalities: When using all the modalities (thermal,
RGB and EDA) to train the model, for TFail the accuracy is
steady at 74% across both window sizes. On the other hand,
TCog accuracy increases to 90% in the 7 second window.
Similarly, when using TCog+TFail, accuracy increases in the
7 seconds to 86%. F1-scores follow the same trends overall
for all three data subsets.

A. Feature Selection

In Table III, the best features of the SFFS are shown for
each task and each modality separately. To show all three
modalities, with the highest model granularity possible, the 3.5
second window was picked to illustrate the feature selection
results.

1) Thermal: When using only the thermal data, for the
TFail classifier it can be seen that the cheek region was
discarded by the feature selector, selecting only the nose,
forehead and lower lip for both temperature average and
change. Similarly for the TCog and the TCog+TFail, the
maximum temperatures of the nose and lower lip were also
selected, in addition to nose temperature average and change
for forehead and lower lip.

2) RGB: In TFail, the most relevant average intensity were
AU20, AU23, AU28, AU10 and AU12, which correspond to
movements in the lips, in addition to 7 and 4 which correspond
to movements in the eye and brow respectively. Similarly,
when using TCog the most relevant features for classification
were the ones that correspond to lip and eye movements (AU07
and AU05). For the TCog+TFail subset, out of the 8 features
selected, 4 were related to lip movements.



Fig. 7: Accuracy measures for cognitive load-induced frustration, failure-induced frustration and both data subsets concatenated.

Fig. 8: F1-score for cognitive load-induced frustration, failure-induced frustration and both data subsets concatenated.

TABLE III: Results for feature selection in the 3.5 second
window.

Task Modality
Temp. average Nose, Forehead, Lower lip
Temp. change Nose, Forehead, Lower lip
Intensity average

Intensity change AU02, AU09, AU04
Intensity maximum AU28
Tonic SCL
Phasic IPI, Peak amplitude, Peak 

duration
Temp. average Lower lip
Intensity average AU28, AU10, AU23, AU17, 

AU06
Temp. change Lower lip
Intensity change AU28, AU02, AU26
Temp. average Nose
Temp. change Forehead, Lower lip
Temp. maximum Nose, Lower lip
Intensity average AU06, AU07, AU02, AU10, 

AU05, AU12, AU26, AU28, 
AU20, AU14

Intensity change AU28, AU20, AU25, AU26
Intensity maximum AU28

EDA Phasic IPI, Peak duration
Temp. average Nose
Intensity average AU45, AU06, AU20, AU10, 

AU23, AU28, AU07, AU25, 
AU12

Temp. change Lower lip
Intensity change AU28, AU04, AU12
Intensity maximum AU01, AU02
Temp. average Nose
Temp. change Forehead, Lower lip
Temp. maximum Nose, lower lip
Intensity average AU06, AU02, AU09, AU25, 

AU26, AU28
Intensity change AU28
Intensity maximum AU28

EDA Phasic Peak duration, Peak rise 
Intensity average AU28, AU06, AU02, AU23, 

AU25
Intensity change AU28
Intensity maximum AU28

AU07, AU20, AU23, AU28, 
AU10, AU04, AU12

All

Thermal

RGB

All

Best Features
TFail

TCog

TCog+TFail

Thermal

RGB

EDA

All

Thermal

RGB

3) EDA: For the TFail classifier, 4 out of the 6 features
were selected: mean conductance level, inter-peak interval,
peak amplitude and peak duration. For the TCog, only inter-
peak interval and peak duration were selected. Finally, when
both tasks are combined, peak rise time and peak duration
were the most relevant features.

4) All Modalities: The most relevant thermal region across
all modalities for the TFail classifier was the lower lip, as the
temperature average and change. In addition, 7 action units
were also selected, mostly corresponding to lip movements. In
TCog, two thermal regions were relevant: the nose temperature
average and the lower lip temperature change. Also, 12 action
units were selected, 6 of which correspond to lip movements,
3 with brows, 2 with eyes and 1 with cheek movements. When
the two tasks are combined, in TCog+TFail, only action units
were selected, 3 corresponding to lip movements and 2 to brow
and cheek movements.

VI. DISCUSSION

The window sizes comparison across all data subsets shows
that using AUs as input data results in the highest accuracy in
the 3.5-second window, while thermal and EDA data achieve
the highest accuracies in the 7-second window. In other words,
increasing the window size decreases the performance of
the classifier which uses RGB features as input, while for
thermal data as input the performance slightly increases, which
coincides with Ekman’s findings [52]. Ekman hypothesised
that facial expressions last between 0.5 to 4 seconds after
a stimuli, but the physiological reaction might take 5 to 15
seconds to completely deteriorate.

Feature selection on the thermal data shows that, among the
ROIs provided, the nose, forehead and lower lip are the most
relevant to detect frustration. In previous works, the cheek
region has been related only to the startle affective state [39],
while the other three regions were associated mainly with
negative affective states like stress, fear and anxiety [39]. This
could explain the correlation that we found with frustration,
which is considered a negative state. Furthermore, the classi-
fiers based on only one task (TFail or TCog) selected different
features out of the thermal data. In fact, the detectors for TCog
and TCog+TFail also used the maximum temperature for the
nose and lower lip. This could imply that the thermal facial



reaction can be dependant on the type of frustration, since
TCog instances are assumed to be more related to cognitive
load-induced frustration and the TFail instances to failure-
induced frustration. For the classifier which uses instances
from both tasks, the features selected are more similar to
those of the TCog detector, which could imply these are
more evidently distinguishable from a baseline state, when
compared to the failure-induced frustration. However, this
effect may be also related to our experimental design and
processing, future investigations are needed to better address
this point.

The selected features for AUs for both tasks are mainly
focused on lip movements, and the common AUs across the
three data subsets are AU28 (lip suck) and AU02 (outer brow
raiser). As stated by [57], AU28 is associated with fidgeting
and can be directly related to negative affective states. The
occurrence of AU02 is explained in [58], which states that it
is mainly associated with focus. Furthermore, the presence
of AU04 (brow lowerer) and AU07 (lid tightner) in both
the TCog and TFail detectors can indicate the occurrence of
confusion [59]. Nonetheless, for the combined (TCog+TFail)
classifier neither of these AUs are selected by the SFFS.
According to the literature [60]–[62], there is no common
consensus on which AUs relate to frustration, as it is task-
dependent. However, some of the AUs mentioned were AU09,
AU10, AU12, AU14, AU23 and AU24, which can be seen
among the features selected for each task. Nonetheless, AU28
was repeatedly selected as one of the most relevant action units
in our work.

Peak duration is the common selected feature across all
data subsets in the EDA modality, in addition to peak rise
time in the TCog+TFail detector. According to [63], [64],
the tonic component (SCL) might be less useful to detect
affective states, while the phasic component is more reactive
to external stimuli. This coincides with the fact that only
phasic components were selected in the TCog+TFail and TCog
detectors.

Combining all the modalities can yield higher accuracies,
as is the case across all detectors in the 7 second window
size. However, the feature selector discarded EDA data from
all the subsets, which indicates that the best combination of
modalities would be AUs and thermal data.

The trained model can be extracted and used in real-time,
the limiting factor for each window size is the amount of data
that would be needed to give one prediction. The time window
for the highest accuracy using thermal imaging is 7 seconds, in
contrast to the RGB models which reach the highest accuracy
in 3.5 seconds. Although, as model reactivity is a priority while
running it in real-time, the increase of 3% in accuracy might
be a valid compromise for faster reactivity. Furthermore, that
does not hinder the capabilities of thermal imaging models
as it still can detect frustration in scenarios where it is not
visible to RGB cameras. Furthermore, a rolling window can
be used to mitigate that effect and increase reactivity in real
time retaining the accuracy.

Overall, using the thermal modality yields the highest accu-

racy when using larger window sizes in TCog+TFail, which
is the more general model. Using RGB features for models
with shorter window sizes will lead to better performance, as
the KNN model had the highest accuracy at the 3.5 second
window.

VII. LIMITATIONS

Considering that phasic features were extracted from EDA
data, the sampling rate of 4 Hz of the used wristband is not
sufficient for small window sizes [65].

Furthermore, allowing for a longer period of rest between
tasks (TCog and TFail) could have provided some insight
on how much time is necessary to return to a neutral state
after becoming frustrated. In TFail, we have assumed that
frustration would occur within 7 seconds of each frustrating
event; nonetheless, the use of external annotators could have
provided a more reliable ground truth for frustration.

Although we have tried to make the interactions as natural
as possible while collecting the data, a more robust model
would be trained on data collected outside of a lab setting.

In future work, we would like to collect a larger data set
with more types of frustration and more participants, which
would result in a more general and reliable model. In addition,
insuring that the data in granular enough to test smaller and
larger window sizes, as the thermal data might perform even
better on window sizes larger than 7 seconds.

VIII. CONCLUSION

In this work, we investigated several models capable of
predicting both cognitive load-induced and failure-induced
frustration, both separately and combined. Furthermore, we
investigated the effects of aggregating the data into intervals
of sizes 1, 3.5 and 7 seconds (window size) on the model’s
performance. Several variations of the model were created for
each window size, depending on the input data used: thermal,
AUs, EDA and all modalities. The use of a sequential floating
feature selector allowed for some insight on relevance of each
feature for detection of frustration.

Thermal data can be used to detect frustration, as the model
had an average accuracy of 85% in TCog+TFail across the
three window sizes. However, using AUs could yield better
results in shorter window sizes, as it performed better than
thermal data, in TCog and TFail separately.

Using just AUs as input proved to yield the highest accuracy
in both the TFail and TCog+TFail detectors, while the TCog
detector using all modalities had the overall highest accuracy
of 91%. Window sizes also proved to have a role in the model’s
performance depending on the modality, as the AUs have the
best accuracy accros data subsets in the 3.5 second window,
but other physiological signals needing 7 seconds or more,
which is consistent with previous findings [52].

The results of the feature selectors for thermal data showed
that the nose, lower lip and forehead are the most relevant
regions for frustration detection, while from action units, the
lip and brow movements appeared to be good indicators of
frustration. As for the EDA data, peak duration was the
common feature selected across all three data subsets.



REFERENCES

[1] Moaed A Abd, Iker Gonzalez, Mehrdad Nojoumian, and Erik D Enge-
berg. Trust, satisfaction and frustration measurements during human-
robot interaction. In Proceedings of the 30th Florida Conference on
Recent Advances in RoboticsMay 11-12, volume 2107, 2017.

[2] Manuel Giuliani, Nicole Mirnig, Gerald Stollnberger, Susanne Stadler,
Roland Buchner, and Manfred Tscheligi. Systematic analysis of video
data from different human–robot interaction studies: a categorization of
social signals during error situations. Frontiers in Psychology, 6:931,
jul 2015.

[3] Jonathan Lazar, Adam Jones, and Ben Shneiderman. Workplace user
frustration with computers: An exploratory investigation of the causes
and severity. Behaviour and Information Technology, 25(3):239–251,
may 2006.

[4] Bernard Weiner. An Attributional Theory of Achievement Motivation
and Emotion. Psychological Review, 92(4):548–573, oct 1985.

[5] Suzy Fox and Paul E. Spector. A model of work frustration-aggression.
Journal of Organizational Behavior, 20(6):915–931, 1999.

[6] John Dollard, Neal E. Miller, Leonard W. Doob, O. H. Mowrer, and
Robert R. Sears. Frustration and aggression. Yale University Press, oct
1939.

[7] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih En Wei, and Yaser
Sheikh. OpenPose: Realtime Multi-Person 2D Pose Estimation Using
Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(1):172–186, jan 2021.

[8] Tadas Baltrusaitis, Peter Robinson, and Louis Philippe Morency. Open-
Face: An open source facial behavior analysis toolkit. In 2016 IEEE
Winter Conference on Applications of Computer Vision, WACV 2016.
Institute of Electrical and Electronics Engineers Inc., may 2016.

[9] Johannes Wagner, Florian Lingenfelser, Tobias Baur, Ionut Damian,
Felix Kistler, and Elisabeth André. The Social Signal Interpretation
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