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Abstract— Multi-modal affect detection systems are substan-
tially impacted by contextual changes, both due to differences
in human affect and to the perception systems that are used
to capture data. In this work, we developed a multi-modal
frustration detection system using thermal imaging in the wild,
and compared its performance when used in a lab environment.
A Gaussian Naive Bayes model was created to classify if a
person is in a frustration state or a non-frustration state. To
train the model, we collected a data set of 81 participants
interacting with a frustration inducing robot in the wild. The
model was trained using three feature modalities: RGB, thermal
imaging and multi-modal (RGB + thermal). RGB features
included 18 facial action units (AUs), while thermal features
included four facial regions: nose, forehead, cheek and lower
lip. When using only RBG features, the model reached an
accuracy of 92% , 70% on thermal features only and 71%
when both features are combined. In addition, we investigated
if models trained on data from the wild could be used to predict
frustration on data collected in the lab and vice-versa. The
model that only used RGB features reached optimal accuracy
of 70% when trained on data collected in the lab and tested on
data collected in the wild. Using only thermal features yielded
maximum accuracy of 57% when trained on data collected in
the wild and tested on the data collected in the lab.

Human-robot interaction; Thermal imaging; Frustration;
Action units;

I. INTRODUCTION

In a data driven approach for multi-modal affect detection,
the context and the environment which the data is collected
becomes an integral part of the developed systems. Research
in environmental psychology [1] suggests that environmental
impact on human emotions can be detected using objec-
tive measurements like electroencephalography (EEG), func-
tional magnetic resonance imaging (fMRI) and near infrared
spectroscopy (fNIRS), indicating that these responses are
caused by a spontaneous physiological reaction. Nonetheless,
the use of those methods in human-robot interaction (HRI)
can be intrusive and unnatural when detecting affective
states.

It is important to note that even when using the most
elaborate set of sensors to detect stress and frustration [2], the
systems are typically deployed in a controlled lab environ-
ment [3], [4] with no consideration for other contextual im-
pacts that can drastically affect the predictions made. Hence,
it is essential to start deploying systems in an uncontrolled
environment, to realistically evaluate the robustness of those
systems, and to understand the realistic nature of the affective
states predicted by them in different environments.
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Further, the use of subjective measurements like self-
assessments is important for the general understanding of
the perceived impact of different environments on human
emotions and affect. However, the subjectivity of the human
consciousness makes it challenging to compare and justify
those conclusions [5], in particular in times when instanta-
neous decisions about the interactions are needed.

Feeling frustrated while using robots is inevitable, as
robots are prone to behavioural errors such as social norm
violations, or technical errors like speech recognition fail-
ures [6], [7]. If left unmitigated, the feeling of frustration will
have a negative effect on the acceptance of the robot in the
environment [7]. Furthermore, frustration can be associated
with lower levels of productivity [8], motivation [9], and
trust [6], and higher levels of aggression [10], [11]. Hence,
robots should have the ability to detect frustration and
mitigate its effects in real time.

In previous work [Anonymous], we successfully collected
data in a lab environment to train a frustration detection
system based on thermal imaging, RGB features and Elec-
trodermal activity (EDA). To acknowledge the importance
of using systems in different environments, in this work we
deploy a similar system in the wild, to investigate and explore
the differences of the signals detected in the wild compared
to the lab. In addition, we address the challenges in detecting
frustration due to repeated failure [12] during collecting data
in the wild.

This will be achieved by:
• Conducting an in the wild data collection extracting

thermal and RGB features;
• Creating a machine learning model that can predict

frustration in an uncontrolled environment;
• Testing the transferability of the models between lab

and wild settings.

II. RELATED WORK

Transferability in the affective computing community has
been an ongoing challenge since the start of the field, due to
the variability of the environment and how differently people
react to stimuli. In this work we address these challenges
using thermal imaging to detect frustration.

A. Effects of the Environment

[13] argues that robotic design decisions should be
based more on in the wild observational analysis rather than
controlled lab settings. The authors have analyzed data from
two different interactions: deploying a robot in a conference
setting and using a ”roboceptionist” in an entrance of the



institute. The observational analysis proved that environmen-
tal aspects can easily change the aspects of the interactions,
perception of participants towards the robots and, most
importantly, the behaviour of the participants towards the
robot. Conversely to comparing two different in the wild
settings, a direct comparison of a lab versus wild setting was
made in [14], between the same setting of a robot performing
animated-like behaviours in both a lab setting and in a public
networking event. Both qualitative and quantitative data were
collected, which have shown that people have reacted to the
robot differently in the two conditions, especially when it
comes to gazing behaviour towards the robot.

These studies show the effect of the environment on
people’s perception of the robot and highlight the importance
of investigating the impact of changing the environment on
robotic perception systems and human emotions.

B. Frustration Detection

One of the most commonly experienced affective states in
HRI is frustration [15]. Therefore, several approaches have
been implemented to detect it. For example, in [2] the authors
used a set of sensors, including skin conductance, pupil track-
ers, posture and pressure sensors to predict frustration. The
authors recruited 24 participants to interact with a tutoring
virtual agent while doing a ”towers of hanoi” activity. The
best performing model was a Gaussian Process model which
reached an accuracy of 79%. Taylor et al. [16] have used a
similar approach by making use of three wearable sensors
to detect frustration: ElectroDermal Activity (EDA), heat
flux and skin temperature. The participants were instructed
to play a modified version of the game ”Breakout”, on
which the researchers had introduced some latency to induce
frustration. Naı̈ve Bayesian models were trained to classify
frustration, reaching an accuracy of 80%. In both of these
works, although the models have reached high accuracies,
the sensors used can be intrusive and are impractical in more
socially dynamic environments. An alternative approach, as
presented by Bosch et al. [17], utilizes an RGB camera
to detect facial action units (FAUs) during a physics-based
playground activity. The study involved participants applying
basic physics principles to solve a puzzle. The authors
extracted both face-only and interaction-only features, which
resulted in AUC scores above chance for detecting emotional
states such as boredom, confusion, frustration, delight, and
engagement.

C. Affective State Detection and Thermal Imaging

Vision-based cameras are commonly used for action unit
and body movement extraction. For instance, [18] used
a Microsoft Kinect for six basic emotions prediction. A
uni-modal neural network was trained on both the facial
expression and body movement streams using late fusion.
93% was the accuracy achieved by the neural network.

Although the use of RGB cameras can lead to high
performing models, these cameras are dependant on lighting
conditions of the recorded dataset, and other environmental

conditions. Self-reported measures and conflicting facial ex-
pression labels are other factors that these models can be
heavily affected by [19].

Alternatively, thermal cameras use far infra-red to measure
the radiation emitted by warm objects, which is independent
of reflected light [20]. Hence, thermal imaging can be used to
overcome RGB cameras’ limitations, as the thermal spectrum
is not affected by light presence and it is able to record
objective measures such as changes in skin temperature [21].
It has been established in the literature that stress and cog-
nitive load have apparent effects on skin temperature [22]–
[26], motivating the use of thermal imaging for affective state
detection in HRI scenarios. In [27], a thermal camera was
mounted on a Meka robot to measure facial temperature
variations while playing a card-based quiz game with the
robot. The authors tested different environmental setups with
the positioning of the robot. They concluded that significant
effects can be seen on the nose temperature of the participant
when the robot is positioned closer to their personal space,
causing a higher stress response.

The present study is based on our previous work on ther-
mal imaging and frustration in a lab environment [Anony-
mous]. Through interacting with a robot, participants would
experience two types of frustration: cognitive load-induced
frustration and failure-induced frustration. The latter occurs
when a person fails to overcome the cause of the failure [28],
namely due to apparent technical failure in a robot. We
collected thermal imaging data, facial expression (action
units, AU) through RGB imaging and EDA. We concluded
that thermal imaging can be used on its own to detect
frustration in both conditions, with similar model accuracies
to models trained on RGB features. When data from the
failure-induced frustration case was used as training input,
the model reached an accuracy of 81% with just RGB
features , 64% using only thermal features, 55% using EDA,
and 74% when using all modalities. Furthermore, the highest
accuracy for the thermal data was reached using three facial
regions of interest: nose, forehead and lower lip.

To the best of our knowledge, there is no study that
develops non-intrusive frustration detection systems in an
in the wild (uncontrolled) environment. Further, we test
model transferability of these systems between lab and wild
environments.

III. METHODOLOGY

In this section, we discuss the details of the two datasets
used in this study and how the data was collected in both the
lab (controlled) and in the wild (uncontrolled) environments.
Model creation will also be addressed.

A. Datasets

In the present work, we want to develop frustration detec-
tion models that are trained on data collected ”in the wild”
(uncontrolled environment). We design a frustration-inducing
interaction and collect thermal and facial action-units data
from each participant, similarly to what was conducted
in [Anonymous]. As this study is used as a reference for



TABLE I: Total number instances obtained from the data
collected in the lab, for failure-induced frustration (F) and
non-frustration instances (NF).

No. of Instances

Window (s) F NF

1 1127 1010

3.5 322 303

7 161 151

the present work, we describe its data collection process,
task and results below.

1) In The Lab: A study on frustration detection on users
interacting with a social robot in a lab setting was carried
out in [Anonymous]. The dataset includes data from 18
participants in a total time of 180 minutes of interaction in a
task that leads to failure-induced frustration. The age of the
participants ranged from 21 to 46 years (M = 27.80, SD =
6.18).

In this study, two tasks were presented to the participants,
separated by a resting period. The instructions and guidance
during the tasks were provided by a NAO robot. A thermal
camera and an RGB camera were mounted on the table for
data collection. Participants were equipped with a wrist EDA
sensor. One task consisted of a quiz where the answers of the
participant would be falsified by the robot, even if they were
correct, leading to frustration by failure. In the other task,
the participant had to program a virtual robot to go from
one point to the other and alternating with a mental rotation
task at the sound of a buzzer, which induced frustration due
to cognitive load [28]. The data from cognitive load-induced
frustration task was not used in the current work, as the type
of frustration induced is different from the one induced in
the wild (Section III-A.2).

Facial expression, temperature of facial regions and EDA
data were collected and all the data was aggregated into
non-overlapping windows of 1, 3.5 or 7 seconds. Within
each window, features such as average, maximum and min-
imum temperatures of every facial region considered were
computed. These samples were used to train a frustration
detection system.

In the present work, we aim to explore failure-induced
frustration. As such, we will only consider results from
the failure-induced frustration task in the previous work.
Frustration (F) instances were considered whenever the robot
failed to acknowledge the participant’s answers as correct.
Non-frustration (NF) instances were collected during the
resting period between the two tasks. The total number of
training samples for each window size is shown in Table I.

2) In The Wild: We replicated the data collection pro-
cess as much as possible from [Anonymous], with small
adjustments in order to adapt the system to an uncontrolled
environment.

a) Task Description: Data collection took place over
one week, at the University library. A Furhat robot would

Fig. 1: The interaction setting. Visitors of the library are
prompted to speak to a Furhat robot by a sign saying ”Ask
me what I can do!”. A tablet is on a stand on the side of
the participant, allowing for self-reporting at the end of the
interaction.

TABLE II: Interaction reply examples.

Keyword Reply

Books The books are on the shelves.

Room Which room?

Gallery Which gallery?

Reception I am the reception.

be acting as a receptionist in the library foyer, providing in-
formation to anyone that approached it. The robot’s protocol
for answers is keyword-based. The robot would be able to
identify keywords within basic questions about the library,
but it was purposely designed to give a failed response.
Responses were decided based on the feedback received
from the pilot study. A sample of the interaction keywords
is shown in Table II. This aimed to lead the participant to an
interaction loop which would be attributed to robot failure
(see Figure 2). The task selected in the wild was adapted to
be more sustainable than the task in the lab, as participants
are less likely to interact with the robot for a longer period of
time, although both tasks are designed to induce frustration
due to failure.

The interaction was considered to be finished when the
participant gazed away from the robot. At that moment, the
robot prompted the participant to fill out a 2-step survey. The
first screen asks ”How was your experience?” and has only
three options: good, neutral and bad. In the case that the
participant chooses ”bad”, 4 more options come up with the
text ”I felt...”. The options are: not sure, angry, disappointed
or frustrated, as can be seen in Figure 3.

Free/Empty
"Currently I do not have
this information, ask me

about another floor?"

"There are spaces to study in both
the first and second floor, which floor

would you like to know?"
First/Second"I can tell you where

are the free spots"

Fig. 2: Frustration loop example for keywords ”free” or
”empty”. Participant keywords are in orange, robot replies
triggered are in the white rectangles. Other loops similar to
this example arise depending on the topic.



Fig. 3: 2-step survey seen on the tablet.
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Fig. 4: System architecture.

b) Participants: We collected data from 90 interactions,
with a total time of 80 minutes. 9 participants were discarded
from the data, as they were wearing face masks, leaving 81
interactions with total time of 73 minutes. In interactions
which included a group of people, the system would record
the data of the closest person to the robot. When their face
was not detected anymore, another recording would start with
a new participant ID. Participants’ expected age range is 18-
40.

c) System Implementation: The system architecture
(Fig. 4) was composed of two cameras mutually calibrated
(thermal IR camera: Optris PI 6401 and RGB-D cam-
era: RealSense D4352), a directional microphone and
a Furhat3 robot. All of the mentioned components were
synchronized in real-time using Robotic Operating System
(ROS). In addition, OpenCV was used for image processing
and camera calibration.

Thermal data was collected at a rate of 15 frames per
second (fps). RGB camera data (action units) was collected
at the same fps. The features for the thermal data were
computed for all the four facial ROIs (regions of interest):
nose, forehead, cheek and lower lip. As for the action units
extracted, they corresponded to the Facial Action Coding
System (FACS): 1 (inner brow raiser), 2 (outer brow raiser),
4 (brow lowerer), 5 (upper lid raiser), 6 (cheek raiser), 7
(lid tightener), 9 (nose wrinkler), 10 (upper lip raiser), 12
(lip corner puller), 14 (dimpler), 15 (lip corner depressor),
17 (chin raiser), 20 (lip stretcher), 23 (lip tightener), 25
(lips part), 26 (jaw drop), 28 (lip suck), and 45 (blink).
Anonymized data is available upon request.

d) Labeling: Data from participants that evaluated the
interaction as ”good” or ”neutral” in the survey were not

1https://www.optris.global/thermal-imager-optris-pi-640
2https://www.intelrealsense.com/

depth-camera-d435/
3https://furhatrobotics.com/

TABLE III: Extracted features for each modality.

Modality Features

Thermal

ROIs temperature average
ROIs temperature change
ROIs temperature maximum
ROIs temperature minimum

RGB

AU Intensity average
AU intensity change
AU maximum intensity
AU minimum intensity

included in training data of the model. Data labeling for
the remaining participants was done based on the findings
in [29]. The authors used the FACS to define frustration,
which concluded that the activation of action units AU01,
AU02 and AU14 is associated directly with frustration. In
addition, [30] concluded that people also resort to smiling
as a coping mechanism for frustration. This was considered
while labeling the data for frustration instances, especially
after the occurrence of failure.

e) Feature Extraction: Thermal imaging and RGB data
were concatenated and synchronized. After data collection,
one annotator labelled each interaction according to the state
of the participant (frustrated, F, or not frustrated). Assuming
a data set with a total I data points (multiple data points per
interaction), and a total of N measurements associated with
each data point, we have each collected data point di associ-
ated with a set of measurements Mi = [m0, ...,mN ] (thermal
data and RGB data) as well as with a label li (F or NF).
Feature extraction for classification is performed through a
sliding window of predefined length (L = 1, 3.5 or 7s) and
hop length h = 0.5s. Every instance (window) Xj used for
training and testing is a feature vector that is calculated from
data points d within that window. We obtain each feature f
by getting the average, feature change (difference between
the starting and ending value within the window), maximum
or minimum values of each measurement m. The label Yj

of that instance is given by the most common label l within
that window. The features extracted from the data are shown
in Table III.

While we maintain the window length used in our previous
work, we choose to overlap windows because that is a closer
approach to how a real-use system would operate. This
process is illustrated in Figure 5.

In Table IV the total number of instances obtained for each
window length is shown.

f) Model: A Gaussian Naive Bayes (GNB) model was
trained on the data collected from the wild. The choice
was based on testing multiple machine learning algorithms:
Random Forest Classifier (RFC), Support Vector Machine
(SVM) and K-nearest Neighbor (KNN). The models testing
was done using a Grid Search Cross Validation (GSCV)
algorithm, which tested each of the models on a range
of hyper-parameters, outputting the ones with the highest
accuracy. None of the tested algorithms showed accuracies
above chance, only the GNB showed higher performance.

https://www.optris.global/thermal-imager-optris-pi-640
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/


Fig. 5: Schematic view of feature extraction. Measurement
mi (in this case, nose temperature), is associated with a set
of data points d, each labelled according to the frustration
state of the participant (in this case, blue for non-frustration
NF, orange for frustration F). One instance Xj for training
is composed of features which are calculated over the set
of data points d, such as average nose temperature. Yj , the
label of this training instance, is given by the most common
label (in this example, Yj = F ).

TABLE IV: Total number of instances used for training in
the cases of failure induced frustration (F) and baseline (NF)
in the wild.

No. of Instances

Window (s) F NF

1 312 4296

3.5 257 4024

7 175 3724

Furthermore, the use of GNB has been proven to perform
well for affect detection using facial expressions in larger
datasets [31], [32].

The data is split into 3 participant-independent folds (2:1
training-validation split). Each fold does not have overlap-
ping participants, in order to test the model on unseen partic-
ipant data.We use cross-validation to report the performance
Section IV.

The models were trained based on the best features se-
lected by the Sequential Forward Floating Selection (SFFS)
algorithm. The SFFS is a wrapper method that uses several
greedy search methods to select the features that would yield
the highest accuracy in the model. The method was adopted
due to its wide use in the affective computing literature [33]–
[35], over its more simple counterpart, sequential forward
selection, which does not exclude the features once they are
selected.

We train models on three different modalities: thermal
data features, RGB data features and both thermal and RGB
features combined. Each of the modalities is tested on three
different window sizes for feature extraction, as is mentioned
above (1, 3.5 and 7s). That is, we obtain a total of 9
frustration detection models of varying performance.

IV. RESULTS

This section addresses the performance and feature selec-
tion of the models trained on data collected in the wild. The
results shown are the average performance on the validation
sets of the 3 folds discussed in Section III-A.2.f. We also

address data collection and transferability of the models
between environments.

A. Model Performance

The GNB model was trained and tested on separate par-
ticipant groups with no overlapping participant data between
them from data collected in the wild. Table V shows perfor-
mance (average accuracy and F1-score across folds) of each
modality and window size. It can be seen that the accuracy
of the thermal data reaches the best performance of 69% in
the 7-second window, while the RGB reaches the optimal
performance in the 1-second window of 92%. Similarly,
when combining both the RGB and thermal modalities,
performance is best for the 1-second window with a 71%
accuracy.

B. Feature Selection

We train models on three different modalities: thermal
data features, RGB data features and both thermal and RGB
features combined. Each of the modalities is tested on three
different window sizes for feature extraction, as is mentioned
above (1, 3.5 and 7s). That is, we obtain a total of 9
frustration detection models of varying performance.

1) Selected Thermal Features: The features selected in
the thermal modality can be seen in Table VI. All the
features concerning the lower lip region were selected, as
well as average and maximum temperatures in the nose
region, maximum temperature in the forehead region and
minimum temperature in the cheek region.

2) Selected Action Unit Features: The features selected
in the action units modality can be seen in Table VII. The
average activation of AUs was not selected, but the maximum
activation of multiple AUs appears to be significant towards
frustration detection. The net intensity variation within the
window (change) as well as the minimum intensity of some
action units are also selected.

3) Selected Multi-modal Features: The features selected
in the combined thermal and action units modality can be
seen in Table VIII. RGB-based features are the majority of
the selected features; similarly to the RBG only modality, the
maximum intensity of multiple AUs was deemed significant
for frustration detection. Thermal-based features are less
prominent, with only the maximum temperature of the nose
and forehead regions being included in the selected features.

C. Transferability

Testing model transferability is essential to broaden the
understanding of environmental change within data collec-
tion. As such, we test the models from each setting (in the
wild and lab environments) on the data from the alternative
setting.

The best performing model from [Anonymous] (lab set-
ting) is a KNN model, which used non-overlapping windows
for feature extraction. Contrastingly, the best performing
model trained on in the wild data is a GNB model (described
in Section III-A.2.f). We test all the modalities and window
sizes on the alternative setting data, so transferability is tested



TABLE V: Model performance for each modality and for each window size.

Modality Thermal RGB Thermal + RGB
Window Size (s) 1 3.5 7 1 3.5 7 1 3.5 7

Accuracy (%) 53 60 69 92 68 62 71 52 63

F1 (%) 53 68 76 89 74 56 71 58 72

TABLE VI: Selected features in the thermal-based modality for the 7-second window length.

Feature Average Change Max Min
Thermal Regions Nose, Lowerlip Lowerlip Nose, Forehead, Lower lip Lower lip, Cheek

TABLE VII: Selected features in the RGB-based modality for the 1-second window length.

Feature Average Change Max Min

Action Units None AU45, AU04, AU17 AU45, AU02, AU09
AU25, AU26 AU01, AU02, AU17

TABLE VIII: Selected features in the multi-modal (thermal + AU features) 1-second window length.

Feature Average Change Max Min
Thermal Regions None None Nose, Forehead None
Action Units AU45, AU01, AU17 AU12 AU01, AU02, AU09, AU23, AU26 AU02, AU25

on a total of 18 models (9 trained on data from [Anonymous]
and tested on data from the present work, and 9 vice-versa).

We reproduce the results from [Anonymous] for readabil-
ity in Table IX. Transferability testing for each setting lead to
accuracies below chance on all modalities except one, which
we describe below.

1) Wild to Lab: The GNB model tested on data collected
in a lab environment lead to a majority of poorly performing
models, with only one modality - thermal-based models -
resulting in accuracies above chance. Table X shows the
performance of these models, with the 3.5-second window
reaching an accuracy of 57%.

2) Lab to Wild: The KNN model tested on data collected
in a wild environment also lead to a majority of poorly
performing models, with again only one modality - RGB
models - resulting in accuracies above chance. Table XI
shows the performance of these models, with the 3.5-second
window reaching an accuracy of 70%.

D. Data Collection in Uncontrolled Environments

We conduct a small observational analysis of the process
of data collection in this study, which we can compare
with data from the previous work. Signal-to-noise ratio is
expected to decrease in uncontrolled environments, both
due to participant behavior (high variance in body position,
movement, and interaction duration across participants) and
conditions of the environment (light and audio noise, other
humans present).

In order to visualize differences between data collected
in the lab [Anonymous] and in the wild, we consider the
average features in the thermal data. For each participant, we
characterize the distribution of temperature values in each
region by taking its mean and standard deviation values.
While physiological reactions to frustration cause a variation
in facial temperature and expression, high deviations from

Fig. 6: Standard deviation across participants for average
lower lip temperature, for each setting and window size (in
seconds).

the mean value of a feature (high standard deviation) may
be indicative of noisy data collection.

Figure 6 shows the standard deviations of the average
lower lip temperature across participants and for all the
window sizes. We choose this feature as it is among the
selected features for the models in both studies.

V. DISCUSSION

Data collection in uncontrolled environments is associated
with a wide set of challenges, as has been discussed. This
affects the amount of data collected, for instance due to
partial or full occlusions of the participants’ faces, but also on
the quality of the data. Fig. 6 illustrates how data collected in
the wild differs from in-lab data collection, with noticeably
higher values for standard deviations in data collected in
the wild. While this is expected given the environmental
factors, we note that the task and participants are different, so
slight differences in these distributions were to be expected.
Given the contributions of this paper in expanding knowledge
about use of affective state detection systems in uncontrolled
environments, we still find these analyses to be relevant.

With this work, we intended to develop a frustration
detection system for in the wild human-robot interactions.
We test different modalities and processing methods (window



TABLE IX: Performance of frustration detection models from [Anonymous] (lab environment) for each modality and for
each window size.

Modality Thermal RGB Thermal + RGB
Window Size (s) 1 3.5 7 1 3.5 7 1 3.5 7

Accuracy (%) 65 65 69 68 81 71 None 75 75

F1 (%) 60 60 64 68 81 71 None 75 75

TABLE X: Performance of the thermal-based modality mod-
els trained on wild data and tested on lab data.

Window size (s) 1s 3.5s 7s
Accuracy (%) 55 57 55
F1 (%) 53 58 53

TABLE XI: Performance of the RGB-based modality models
trained on lab data and tested on wild data.

Window size (s) 1s 3.5s 7s
Accuracy (%) 60 70 60
F1 (%) 72 78 72

sizes), with varying performances. The thermal-based modal-
ity achieves accuracies up to 69%, with increasing accuracies
as window sizes increase. Interestingly, in [Anonymous]
similar conclusions were made on data collected in a lab
environment. These findings coincide with Ekman’s find-
ings [36] that physiological reactions to a stimuli (such as
temperature changes in facial regions) occur within 5-15
seconds.

Notably, the thermal features selected for the best per-
forming model (7-second window, Table VI) differ from the
findings in [Anonymous] for the frustration due to failure
task. The cheek region, which was absent from all the models
in the previous work, was selected in the case of some
wild data, but only its minimum value within each window.
In [37], [38] it was concluded that the cheek can warm up
due to disgust and sadness.

The RGB-based modality performed in a contrasting man-
ner as to previous results. Table V shows that performance
peaks at a 1-second window length, but the accuracy of the
model dips to 68% in the 3.5 second window. From the
discussion on Section IV-D, and due to varying light con-
ditions throughout the day, lower signal-to-noise ratios can
be expected for RGB features, which will also vary across
window sizes. Further, group-independent cross validation
creates a pessimistic bias [39] with high variance across folds
[40] due to noise and participant data variation.

Most action units selected from the RGB features are re-
lated to brow raising (AU04, AU01, AU02), blinking (AU45),
chin raising (AU17) or lip movement (AU25). Brow raising
can be an indication of focus as well as frustration [41].
According to the literature [42]–[44], there is no common
consensus on which AUs relate to frustration, as it is task-
dependent. However, some of the AUs commonly identified
are AU09, AU10, AU23 and AU25, which can be seen among
the features selected.

Finally, multi-modal model shows higher accuracies in the

1-second window size model. Overall, this model performs
slightly better than a thermal-only frustration detection (71 %
accuracy versus a 69% accuracy), with the smaller window
size, possibly indicating the influence of RGB-based features
towards classification.

When combining both thermal and RGB features, similar
action units to the RGB-based modality were selected, with
the addition of AU12 which correlates to smiling. As based
on [30], smiling can be an indication of frustration. Only two
thermal regions were selected (nose and forehead), which
points to these regions being the strongest indicators of
frustration [3], [38], [45], even when using RGB features.

Transferability of models is a key aspect in internal state
detection, as it shows if the models can be deployed on
different environments or if their usability is exclusive to
the environment in which the training data was collected.
In Tables X and XI we show the feasibility of applying
models from uncontrolled (resp. controlled) environments on
data from controlled (resp. uncontrolled) settings. Table X,
which describes results from a model trained on wild data
and tested with data from the lab environment, shows higher
performance in the 3.5-second modality on thermal data,
with accuracies only slightly below (57% compared to 60%,
obtained when tested on data from the wild setting). Inter-
estingly, the opposite model (lab data trained model, tested
on wild data) performs best in the RGB-based modality in
the 3.5-second window (70%). This window size lead to the
worst performance among the RGB modality for the ”wild
trained, wild tested” models.

Lower performances in transferability testing can be
caused by noisy data. For data collected in the wild, more
advanced processing techniques might be needed to deter-
mine the baseline of each participant, in order to allow for
transferability.

Overall, this study has shown that with short window sizes,
frustration detection models in uncontrolled environments
perform better when using only RGB features, whereas in
the case of larger window sizes, using thermal imaging can
yield better performance (See Table V). For thermal imaging
to outperform RGB features in short window sizes, more
processing might be needed, in order to better consider the
person’s baseline temperature and to account for the noise
in the environment. As such, in environments where RGB
features cannot be extracted (such as low light environments),
thermal-based models are still able to detect frustration,
although trading-off on performance. Finally, we see indica-
tions that models trained with data from a lab environment
can be used to detect frustration in the wild only in the



RGB-based modality; while a model trained on thermal data
collected in an uncontrolled environment has the potential
to still detect frustration above chance with data from a lab
environment.

VI. LIMITATIONS

While throughout this work we establish comparisons with
frustration detection in controlled versus uncontrolled envi-
ronments, it is important to recognize that the two settings
are significantly different. Though the interaction with the
robot, on both studies, is designed to elicit frustration due
to failure, the tasks and task duration are not the same. The
task in [Anonymous] is not reproducible in a in the wild
scenario, yet the task in this work was designed to elicit the
same type of frustration (failure-induced).

In the wild there are also multiple uncontrollable variables.
For example, the participant’s temperatures are expected
to be affected by the weather and the activity that the
participant was engaged in, and lighting conditions vary.
Data is also imbalanced. In this work, because we establish
some comparisons with prior work, performance metrics are
replicated and expressed as the average performance across
all the folds. Alternatively, the use of balanced accuracy [46]
as a metric is an additional solution that can be used along
with cross validation to address the imbalance of data. While
we cannot measure the age range of the participants, users
were mostly students or University faculty. This could have
effects on the generalizability of our models.

Finally, the use of multiple annotators and considering the
pair-wise Cohen kappa value to measure the inter-annotator
agreement could have increased the robustness of the labeling
method. For this study, one annotator was used due to
the direct relationship of frustration to failure - if failure
occurred, it was relatively clear to observe the frustration
signs discussed in Section III-A.2.d.

VII. CONCLUSION

In this work we aimed to create a frustration detection
system that can be used robustly in the wild using thermal
imaging. The system creation process included data collec-
tion in an uncontrolled environment, training and testing
machine learning algorithms and comparing the performance
to previously created models from data collected in a lab
environment [Anonymous].

The use of partially overlapping windows when extracting
training samples approximates the system from a real-world
scenario, as detection can start at any moment and should
be continuous. The features extracted from the data in the
wild included eighteen action units and four facial thermal
regions. Future work may include the use of more modalities,
such as audio-based features. More regions of the face may
be considered in thermal imaging data, namely by separating
both sides of the face, as [47] suggested that the face is
thermally asymmetric.

We argue for the importance of testing transferability in
affective state detection systems, and test performance of two
model types on data from environment that differ from the

training data. The models proved to be transferable under
certain conditions, but data processing may be improved in
order to allow for better transferability of the models.

Our main contribution is the development of a frustration
detection system from data collected in an uncontrolled
environment. We were able to achieve high performances,
with the RGB-based modality achieving a high accuracy of
92% in a 1-second window, and the thermal-based model
peaking in performance at the 7-second window, with an
accuracy of 69%.
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Lemaignan, and Iolanda Leite. Automatic frustration detection using
thermal imaging. In Proceedings of the 2022 ACM/IEEE International
Conference on Human-Robot Interaction, pages 451–460, 2022.

[5] Eve A Edelstein and Eduardo Macagno. Form follows function:
bridging neuroscience and architecture. In Sustainable environmental
design in architecture, pages 27–41. Springer, 2012.

[6] Moaed A Abd, Iker Gonzalez, Mehrdad Nojoumian, and Erik D Enge-
berg. Trust, satisfaction and frustration measurements during human-
robot interaction. In Proceedings of the 30th Florida Conference on
Recent Advances in RoboticsMay 11-12, volume 2107, 2017.

[7] Manuel Giuliani, Nicole Mirnig, Gerald Stollnberger, Susanne Stadler,
Roland Buchner, and Manfred Tscheligi. Systematic analysis of video
data from different human–robot interaction studies: a categorization
of social signals during error situations. Frontiers in Psychology,
6:931, jul 2015.

[8] Jonathan Lazar, Adam Jones, and Ben Shneiderman. Workplace user
frustration with computers: An exploratory investigation of the causes
and severity. Behaviour and Information Technology, 25(3):239–251,
may 2006.

[9] Bernard Weiner. An Attributional Theory of Achievement Motivation
and Emotion. Psychological Review, 92(4):548–573, oct 1985.

[10] Suzy Fox and Paul E. Spector. A model of work frustration-aggression.
Journal of Organizational Behavior, 20(6):915–931, 1999.

[11] John Dollard, Neal E. Miller, Leonard W. Doob, O. H. Mowrer, and
Robert R. Sears. Frustration and aggression. Yale University Press,
oct 1939.

[12] Suhaib Aslam, Kim Gouweleeuw, Gijs Verhoeven, and Nynke Zwart.
Classification of Disappointment and Frustration Elicited by Human-
Computer Interaction: Towards Affective HCI. Number August, 2019.

[13] Selma Sabanovic, Marek P Michalowski, and Reid Simmons. Robots
in the wild: Observing human-robot social interaction outside the lab.
In 9th IEEE International Workshop on Advanced Motion Control,
2006., pages 596–601. IEEE, 2006.

[14] Andreas Kornmaaler Hansen, Juliane Nilsson, Elizabeth Ann Jochum,
and Damith Herath. On the importance of posture and the interaction
environment: Exploring agency, animacy and presence in the lab vs
wild using mixed-methods. In Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, pages 227–
229, 2020.

[15] Alexandra Weidemann and Nele Rußwinkel. The Role of Frustration
in Human–Robot Interaction – What Is Needed for a Successful
Collaboration? Frontiers in Psychology, 12:707, mar 2021.

[16] Brandon Taylor, Anind Dey, Daniel Siewiorek, and Asim Smailagic.
Using physiological sensors to detect levels of user frustration induced
by system delays. In UbiComp 2015 - Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pages 517–528. Association for Computing Machinery,
Inc, sep 2015.



[17] Nigel Bosch, Huili Chen, Sidney D’Mello, Ryan Baker, and Valerie
Shute. Accuracy vs. availability heuristic in multimodal affect detec-
tion in the wild. In Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction, pages 267–274, 2015.

[18] Athanasios Psaltis, Kyriaki Kaza, Kiriakos Stefanidis, Spyridon Ther-
mos, Konstantinos C. Apostolakis, Kosmas Dimitropoulos, and Petros
Daras. Multimodal affective state recognition in serious games
applications. In 2016 IEEE International Conference on Imaging
Systems and Techniques (IST), pages 435–439, 2016.

[19] Angeliki Fydanaki and Zeno Geradts. Evaluating OpenFace:
an open-source automatic facial comparison algorithm for foren-
sics. https://doi.org/10.1080/20961790.2018.1523703, 3(3):202–209,
jul 2018.

[20] J. M. Lloyd. Thermal Imaging Systems. Springer US, Boston, MA,
1975.

[21] Thu Nguyen, Khang Tran, and Hung Nguyen. Towards Thermal
Region of Interest for Human Emotion Estimation. In Proceedings
of 2018 10th International Conference on Knowledge and Systems
Engineering, KSE 2018, pages 152–157. Institute of Electrical and
Electronics Engineers Inc., dec 2018.

[22] Stephanos Ioannou, Vittorio Gallese, and Arcangelo Merla. Thermal
infrared imaging in psychophysiology: Potentialities and limits. Psy-
chophysiology, 51(10):951–963, oct 2014.

[23] Youngjun Cho, Nadia Bianchi-Berthouze, Manuel Oliveira, Catherine
Holloway, and Simon Julier. Nose heat: exploring stress-induced
nasal thermal variability through mobile thermal imaging. In 2019
8th International Conference on Affective Computing and Intelligent
Interaction (ACII), pages 566–572. IEEE, 2019.

[24] Youngjun Cho, Simon J Julier, and Nadia Bianchi-Berthouze. Instant
Stress: Detection of Perceived Mental Stress Through Smartphone
Photoplethysmography and Thermal Imaging. JMIR Ment Health,
6(4):e10140, apr 2019.

[25] Veronika Engert, Arcangelo Merla, Joshua A Grant, Daniela Cardone,
Anita Tusche, and Tania Singer. Exploring the use of thermal infrared
imaging in human stress research. PloS one, 9(3):e90782, 2014.

[26] Hans JA Veltman and Wouter WK Vos. Facial temperature as a
measure of mental workload. In 2005 International Symposium on
Aviation Psychology, page 777, 2005.

[27] Mihaela Sorostinean, François Ferland, and Adriana Tapus. Reliable
stress measurement using face temperature variation with a thermal
camera in human-robot interaction. In IEEE-RAS International Con-
ference on Humanoid Robots, volume 2015-Decem, pages 14–19.
IEEE Computer Society, dec 2015.

[28] Barry Kort, Rob Reilly, and Rosalind W Picard. An affective model of
interplay between emotions and learning: Reengineering educational
pedagogy-building a learning companion. In Proceedings IEEE
international conference on advanced learning technologies, pages
43–46. IEEE, 2001.

[29] Scotty D Craig, Sidney D’Mello, Amy Witherspoon, and Art Graesser.
Emote aloud during learning with autotutor: Applying the facial action
coding system to cognitive–affective states during learning. Cognition
and Emotion, 22(5):777–788, 2008.

[30] Mohammed Hoque and Rosalind W. Picard. Acted vs. natural
frustration and delight: Many people smile in natural frustration.
In 2011 IEEE International Conference on Automatic Face Gesture
Recognition (FG), pages 354–359, 2011.

[31] Ira Cohen, Nicu Sebe, Ashutosh Garg, Lawrence S Chen, and
Thomas S Huang. Facial expression recognition from video sequences:
temporal and static modeling. Computer Vision and image understand-
ing, 91(1-2):160–187, 2003.

[35] Vitaliy Kolodyazhniy, Sylvia D. Kreibig, James J. Gross, Walton T.
Roth, and Frank H. Wilhelm. An affective computing approach to
physiological emotion specificity: Toward subject-independent and

[32] Nicu Sebe, Michael S Lew, Ira Cohen, Ashutosh Garg, and Thomas S
Huang. Emotion recognition using a cauchy naive bayes classifier. In
Object recognition supported by user interaction for service robots,
volume 1, pages 17–20. IEEE, 2002.

[33] Elias Vyzas and Rosalind W Picard. Offline and online recognition of
emotion expression from physiological data. In Workshop on Emotion-
Based Agent Architectures at the Third International Conference on
Autonomous Agents, volume Technical, 1999.

[34] Rosalind W. Picard, Elias Vyzas, and Jennifer Healey. Toward ma-
chine emotional intelligence: Analysis of affective physiological state.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(10):1175–1191, 2001.
stimulus-independent classification of film-induced emotions. Psy-
chophysiology, 48(7):908–922, jul 2011.

[36] Paul Ekman. Emotions revealed: recognizing faces and feelings to
improve communication and emotional life. 2003.

[37] Dawn T Robinson, Jody Clay-Warner, Christopher D Moore, Tiffani
Everett, Alexander Watts, Traci N Tucker, and Chi Thai. Toward an
unobtrusive measure of emotion during interaction: Thermal imaging
techniques. In Biosociology and neurosociology. Emerald Group
Publishing Limited, 2012.

[38] Irving A Cruz-Albarran, Juan P Benitez-Rangel, Roque A Osornio-
Rios, and Luis A Morales-Hernandez. Human emotions detection
based on a smart-thermal system of thermographic images. Infrared
Physics & Technology, 81:250–261, 2017.

[39] Ron Kohavi et al. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Ijcai, volume 14, pages
1137–1145. Montreal, Canada, 1995.

[40] Sebastian Raschka. Model evaluation, model selection, and algorithm
selection in machine learning, part iii—cross-validation and hyperpa-
rameter tuning, 2016.

[41] Ebrahim Babaei, Namrata Srivastava, Joshua Newn, Qiushi Zhou,
Tilman Dingler, and Eduardo Velloso. Faces of Focus: A Study on
the Facial Cues of Attentional States, page 1–13. Association for
Computing Machinery, New York, NY, USA, 2020.

[42] Klas Ihme, Anirudh Unni, Meng Zhang, Jochem W Rieger, and
Meike Jipp. Recognizing frustration of drivers from face video
recordings and brain activation measurements with functional near-
infrared spectroscopy. Frontiers in human neuroscience, 12:327, 2018.

[43] SK D’Mello, SD Craig, B Gholson, S Franklin, R Picard, and
AC Graesser. Integrating affect sensors into an intelligent tutoring
system. In Affective interactions: The computer in the affective loop.
Proceedings of the 2005 International Conference on Intelligent User
Interfaces, pages 7–13, 2004.

[44] Bethany McDaniel, Sidney D’Mello, Brandon King, Patrick Chipman,
Kristy Tapp, and Art Graesser. Facial features for affective state
detection in learning environments. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 29, 2007.

[45] Colin Puri, Leslie Olson, Ioannis Pavlidis, James Levine, and Justin
Starren. Stresscam: Non-contact measurement of users’ emotional
states through thermal imaging. In CHI ’05 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’05, page 1725–1728,
New York, NY, USA, 2005. Association for Computing Machinery.

[46] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and
Joachim M Buhmann. The balanced accuracy and its posterior distri-
bution. In 2010 20th international conference on pattern recognition,
pages 3121–3124. IEEE, 2010.

[47] Christiane Goulart, Carlos Valadão, Denis Delisle-Rodriguez, Eli-
ete Caldeira, and Teodiano Bastos. Emotion analysis in children
through facial emissivity of infrared thermal imaging. PloS one,
14(3):e0212928, 2019.


	Introduction
	Related Work
	Effects of the Environment
	Frustration Detection
	Affective State Detection and Thermal Imaging

	Methodology
	Datasets
	In The Lab
	In The Wild


	Results
	Model Performance
	Feature Selection
	Selected Thermal Features
	Selected Action Unit Features
	Selected Multi-modal Features

	Transferability
	Wild to Lab
	Lab to Wild

	Data Collection in Uncontrolled Environments

	Discussion
	Limitations
	Conclusion
	References

